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Abstract
We study the Ak generalized model of the O(1) loop model on a cylinder.
The affine Hecke algebra associated with the model is characterized by a
vanishing condition, the cylindric relation. We present two representations of
the algebra: the first one is the spin representation, and the other is in the
vector space of states of the Ak generalized model. A state of the model is a
natural generalization of a link pattern. We propose a new graphical way of
dealing with the Yang–Baxter equation and q-symmetrizers by the use of the
rhombus tiling. The relation between two representations and the meaning of
the cylindric relations are clarified through the rhombus tiling. The sum rule for
this model is obtained by solving the q-KZ equation at the Razumov–Stroganov
point.

PACS numbers: 02.20.Uw, 02.30.Ik

1. Introduction

The ground state of the O(1) loop model (or the Temperley–Lieb (TL) stochastic process) has
been extensively studied since the observation by Razumov and Stroganov [1] (see also [2–8]).
Through these studies, different research areas in mathematics and physics make contact with
each other; for example, alternating sign matrices (ASMs) in combinatorics [9, 10] (see [11]
and references therein), polynomial representations of the Temperley–Lieb/Hecke algebra in
representation theory [12–15] and exactly solvable models such as the six-vertex model in
statistical physics (for example [16, 17]).

Razumov and Stroganov submitted seven conjectures related to the XXZ spin chain model
at the anisotropic parameter � = −1/2 with periodic conditions in [1]. These conjectures
were generalized to the O(1) loop model in [5]. A typical one is the sum rule (conjecture
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8 in [5]): the 1-sum of the ground state wavefunction of the O(1) loop model with periodic
boundary conditions and length L = 2n is given by the total number of n × n ASMs. The
ground state wavefunction � has another remarkable property. In [3], it is conjectured that an
entry �π of � is equal to the total number of fully packed loops with a link pattern π . This
is the most popular form of the Razumov–Stroganov (RS) conjectures. The above-mentioned
sum rule is a consequence of the RS conjectures for entries.

The sum rule for the O(1) loop model with periodic boundary conditions was proved by
Di Francesco and Zinn–Justin by introducing inhomogeneity and utilizing the integrability
[18]. The key is the q-Kniznik–Zamolodochikov (q-KZ) equation [19], which is equivalent
to finding the eigenvector of the transfer matrix with eigenvalue unity. At the RS point, i.e.
q = −exp(π i/3), by solving the q-KZ equation it was found that the sum of the entries
of � is equal to the partition function of the six-vertex model with domain wall boundary
conditions (6V/DWBC). If we take the homogeneous limit where all the inhomogeneous
spectral parameters zi’s tend to unity, the partition function of 6V/DWBC is proportional to
the total number of ASMs [10, 20].

There are two natural generalizations of the O(1) loop model. The first one is to change
the geometry of the states, or equivalently to change the boundary conditions [21]. The TL
algebra naturally acts on the space of link patterns. The link patterns considered in [18] are
undirected ones. On the other hand, we may impose the direction on link patterns like those in
[22]. The former ones are the same as link patterns with periodic boundary conditions or on an
unpunctured disc, whereas the latter ones are the same as link patterns with cylindric boundary
conditions or on a punctured disc, i.e. on a cylinder. The direction of link detects the position
of the punctured point. The space of the link patterns with periodic (resp. cylindric) boundary
conditions is also equivalent to the space of Dyck paths or restricted (resp. unrestricted) paths
of the IRF model. The second is to extend the affine TL algebra to the affine Hecke algebra
[23–25]. The Ak generalized model defined in terms of the Hecke algebra of type A [26] is
a natural generalization of the O(1) loop model with periodic boundary conditions. Higher
rank models with open boundaries were also discussed in [27].

Remarkably, the eigenvector of the transfer matrix of the O(1) loop model with periodic
boundary conditions constitutes a special polynomial representation of the affine TL algebra
[13]. This correspondence was also studied for the O(1) model with cylindric boundary
conditions in [14]. On the other hand, the special polynomial solutions of the q-KZ equation
for the higher rank case of Uq(ŝlk) were constructed in [15].

In this paper, we define and study the Ak generalized model on a cylinder. This model
is a new hybrid generalization of the O(1) loop model, defined in terms of the affine Hecke
algebra of type A and with cylindric boundary conditions. The affine Hecke algebra satisfies
new vanishing conditions, which we call ‘the cylindric relations’ (see equations (9) and (10)
in section 2.1). The cylindric relations fix the spin representation of the affine Hecke algebra.
The intuitive meaning of the cylindric relation is to assign to a ‘band’ around the cylinder a
certain weight written in terms of the second kind of the Chebyshev polynomials. This is
a natural generalization for the affine TL algebra considered in [22], where the weight of a
loop around the cylinder is τ . We establish an explicit way of constructing states of the Ak

generalized model. Each state is written in terms of the affine Hecke algebra and characterized
by a path. For this purpose, we introduce a novel graphical way of depicting states by the use
of the rhombus tiling. Although similar graphs appeared in the IRF model and in the paper
[26], our graphical way has the following properties. A rhombus represents the Ř-matrix
constructed from the affine Hecke generator. On its face, a rhombus has a positive integer
indicating the spectral parameter of the Ř-matrix. The Yang–Baxter equation is realized as
the equivalence between two different ways of tiling of a hexagon. The q-symmetrizer Yk of
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the affine Hecke algebra is expressed as a 2(k + 1)-gon. A state is identified with a path via the
graphical representation of the rhombus tiling. Roughly speaking, piling rhombus tiles over
the 2(k +1)-gons and reading the path on the top of the rhombus tiling, we have an unrestricted
path. Indeed, an unrestricted path gives a representation of a state of our model.

We consider the eigenvector of the transfer matrix of the Ak generalized model with
eigenvalue unity at the Razumov–Stroganov point, q = −exp(π i/(k + 1)). At this point, the
eigenvector of the transfer matrix satisfies the q-KZ equation. Originally, the q-KZ equation
has two parameters q and s. The parameter s indicates the action of the cyclic transformation.
In our situation, however, the definition of the Ak generalized model has only q and assumes
s = 1. Due to the condition s = 1, the eigenvector of the transfer matrix with eigenvalue
unity should coincide with the solution of the q-KZ equation only at the RS point.

By resolving the solution of the q-KZ equation at the RS point, we find that the sum of
the weighted entries is the product of k Schur functions. Our sum rule contains the sum rule
for the O(1) loop model on a cylinder when k = 2 [22]. Compared with the results in [15]
([14] for k = 2), the solution of the q-KZ equation obtained in this paper is identified with the
one of level 1 + 1

k
− k.

This paper is organized as follows. In section 2, we briefly review the affine Hecke algebra.
We introduce a class of the affine Hecke algebra which is characterized by the cylindric relation.
The graphical definition and some basic properties of a rhombus with an integer are given. In
section 3, we consider the spin representation of the affine Hecke algebra. We show that the
affine Hecke generator is obtained by twisting the standard Hecke generator by a diagonal
matrix. We clarify the intuitive meaning of the cylindric relations by using the graphical
depiction introduced in section 2. In section 4, we move to the Ak generalized model on a
cylinder. We first briefly introduce the O(1) loop model on a cylinder with the perimeter of
even length and reproduce the sum rule in section 4.1.3. The derivation of the sum rule is
different from [22] in the sense that we consider only the even case. We consider the space of
link patterns which the affine Temperley–Lieb algebra acts on. We also explicitly write down
the word representation of the highest weight state. Then, we obtain the sum rule for the O(1)

loop model by solving the q-KZ equation. In section 4.2, we introduce the Ak generalization
of the O(1) loop model on a cylinder. We construct the states for this model through the
correspondence among an unrestricted path, a rhombus tiling and a word. The relation to the
spin chain model is also stated in section 4.2.2. We solve the q-KZ equation and obtain the sum
rule in section 4.2.3. This solution is identified with the solution of the q-KZ equation
of level 1 + 1

k
− k in section 4.3. Section 5 is devoted to the evaluation of the recursive

relation for the Schur function appeared in section 4. Concluding remarks are in section 6.
Appendix A.1 is devoted to the proof of proposition 3.5, which states about the cylindric
relations in the spin representation. In appendix A.2, we show that some coefficients Ci,π,π ′

(see section 4) are equal to 1. In appendix A.3, we give examples how the affine Hecke algebra
acts on a state in the case of (k, n) = (3, 1) and k = 4.

2. Affine Hecke algebra

We introduce the affine Hecke algebra of type A in section 2.1. We impose a new
vanishing condition on the affine Hecke algebra, which we call the ‘cylindric relations’. In
sections 2.2 and 2.3, we present basic properties of q-symmetrizers and the Yang–Baxter
equation. In section 2.4, a rhombus with an integer is introduced for a new graphical method.
The graphical ways of the Yang–Baxter equation and q-symmetrizers are given by rhombus
tiling.
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2.1. Affine Hecke algebra

The Iwahori–Hecke algebra HN(τ) has generators {e1, . . . , eN−1} which satisfy the following
defining relations:

e2
i = τei, (1a)

eiei±1ei − ei = ei±1eiei±1 − ei±1, (1b)

eiej = ej ei, if |i − j | > 1, (1c)

where we set τ = −(q +q−1). If we set ti = ei +q, the Iwahori–Hecke algebra can be regarded
as the quotient algebra of the braid group: ti tj = tj ti for |i − j | > 1, ti ti±1ti = ti±1ti ti±1 and
the quotient relation (ti − q)(ti + q−1) = 0.

When the algebra HN(τ) satisfies the vanishing condition

Yk(ei, . . . , ei+k−1) = 0, for i = 1, . . . , N − k, (2)

we denote this Uq(sl(k)) quotient Hecke algebra by H
(k)
N (τ ). Here, the relation Ym is Young’s

q-symmetrizer, defined recursively as

Ym+1(ei, . . . , ei+m) = Ym(ei, . . . , ei+m−1)(ei+m − µm)Ym(ei, . . . , ei+m−1), (3)

with Y1(ei) = ei , where µm = Um−1(τ )

Um(τ)
and Um := Um(τ) is the Chebyshev polynomials of the

second kind subject to Um(2 cos x) = sin(m+1)x

sin x
. The explicit expression of Um is given by

Um(τ) = (−)m
qm+1 − q−(m+1)

q − q−1
, (4)

µm = − qm − q−m

qm+1 − q−(m+1)
. (5)

In particular, H
(2)
N (τ ) is the Temperley–Lieb algebra.

The affine Hecke algebra is an extension of the Iwahori–Hecke algebra, obtained by
adding the generators yi, 1 � i � N . The generators satisfy (1) and

yiyj = yjyi (6)

tiyj = yj ti if j �= i, i + 1 (7)

tiyi+1 = yit
−1
i if i � N − 1. (8)

Let us introduce the cyclic operator σ through Yang’s realization of the affine relation.
Then, yn is obtained from the recursive relation yn = t−1

n−1yn−1t
−1
n−1 with y1 = t1t2 . . . tn−1σ .

We may define an additional generator tN = σ t1σ
−1, or eN = σe1σ

−1. Note that the
cyclic operator σ makes the defining relations (1) become cyclic and it holds the relations
σ ti = ti−1σ for all i. In what follows, we mainly focus on the generators {e1, . . . , eN , σ },
since the affine Hecke algebra can be constructed from these generators.

In this paper, we consider the case where N is a multiple of k, i.e., N = nk with an positive

integer n and also consider the special case of the affine Hecke algebra Ĥ
(k)
N (τ ) by imposing

the additional vanishing condition as follows.

• When N = k, we have

Yk−1(e1, . . . , eN−1)(eN − τ)Yk−1(e1, . . . , eN−1) = 0. (9)

Obviously, Yk(e1, . . . , eN) is non-zero.
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• For N = nk with n � 2,

Yq-sym ·
n−1∏
i=1

(eik − µk−1)(enk − τ) · Yq-sym = 0, (10)

where Yq-sym := ∏n−1
i=0 Yk−1(eik+1, . . . , e(i+1)k−1) is the product of the q-symmetrizers.

Below we call these vanishing conditions as the cylindric relations.

Remark 1. When n � 2, the quotient relation (2) also becomes cyclic. When n = 1,
the cylindric relation can be regarded as a modified quotient relation. The reason why the
vanishing condition (2) breaks will become clear when we consider the spin representation in
section 2.

Remark 2. If we set σ = t−1
N−1 · · · t−1

1 , we obtain the affine Hecke algebra considered in
[13, 22].

2.2. Basic properties of q-symmetrizer

For later convenience, we abbreviate Yk(ei, . . . , ei+k−1) as Y
(i)
k . Then, we have the following.

Proposition 2.1. The q-symmetrizer satisfies the following properties:

• ejY
(i)
k = Y

(i)
k ej = τY

(i)
k if i � j � i + k − 1,

• When l � k and i � j � i + k − l, we have Y
(i)
k Y

(j)

l = Y
(j)

l Y
(i)
k = αlY

(i)
k where

αl = ∏l
i=1 µ−2l−i

i .

Proof. We use the method of induction. When k = 1, we have eiY
(i)
1 = Y

(i)
1 ei = e2

i = τei

from the definition of Y
(i)
1 . We assume that the statement holds true for less than or equal to

n, i.e. ejY
(i)
n = τY (i)

n , for i � j � i + n − 1. From the definition Y
(i)
n+1 = Y (i)

n (ei+n − µn)Y
(i)
n ,

we have ejY
(i)
n+1 = ejY

(i)
n (ei+n −µn)Y

(i)
n = τY

(i)
n+1 for i � j � i + n− 1. Since Y

(j)

l consists of
the generators ej , . . . , ej+l−1, we also have Y

(j)

l Y (i)
n = αlY

(i)
n , for l � n and i � j � i + n − l,

where αl is a constant determined below. Then, the action of ei+n on Y
(i)
n+1 is calculated as

ei+nY
(i)
n+1 = ei+nY

(i)
n−1(ei+n−1 − µn−1)Y

(i)
n−1(ei+n − µn)Y

(i)
n

= Y
(i)
n−1ei+n(ei+n−1 − µn−1)(ei+n − µn)Y

(i)
n−1Y

(i)
n

= αn−1Y
(i)
n−1ei+n(ei+n−1 − µn−1)(ei+n − µn)Y

(i)
n

= ταn−1Y
(i)
n−1(ei+n−1 − µn−1)(ei+n − µn)Y

(i)
n

= τY
(i)
n+1,

where we have used in the penultimate equality the relations ei+n−1Y
(i)
n = τY (i)

n , eiei+1ei −ei =
ei+1eiei+1 − ei+1 and τµj − µjµj−1 = 1 for any j . We also have Y (i)

n ej = τY (i)
n in the similar

way. The proof of the first property is then completed.
We consider the case Yn = Y (1)

n for the second relation. We have Yk · Yk = αkYk from the
definition of αk . On the other hand, by using inductive relations, we have

Yk · Yk = Yk−1(ek−1 − µk−1)Yk−1Yk−1(ek−1 − µk−1)Yk−1

= αk−1Yk−1(ek − µk−1)Yk−2(ek−1 − µk−2)Yk−2(ek − µk−1)Yk−1

= αk−1α
2
k−2Yk−1(ek − µk−1)(ek−1 − µk−2)(ek − µk−1)Yk−1

= αk−1α
2
k−2

1

µkµk−1
Yk.
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The proof is completed by checking αn the recurrence relation

αn = 1

µnµn−1
αn−1α

2
n−2, (11)

with the initial condition α1 = τ = µ−1
1 , and α2 = τ(τ 2 − 1) = µ−2

1 µ−1
2 is satisfied by

αn =
n∏

i=1

µ−2n−i

i . (12)
�

2.3. Ř-matrix and the Yang–Baxter equation

2.3.1. Ř-matrix and the Yang–Baxter equation. Let Řii+1 = ei + q be the Ř-matrix where ei

is the generator of Ĥ
(k)
N . One can show that Řii+1 satisfies the braid relation

Řii+1Ři+1i+2Řii+1 = Ři+1i+2Řii+1Ři+1i+2. (13)

Řii+1 has the inverse Ř−1
ii+1 = ei + q−1 from the unitary relation Řii+1Ř

−1
ii+1 = Ř−1

ii+1Řii+1 = 1.
Let us introduce the permutation Pij which exchange the indices i and j . The R-matrix is

defined by Rii+1 = Řii+1Pii+1 and obeys the Yang–Baxter equation

R12R13R23 = R23R13R12. (14)

The trigonometric Ř-matrix can be constructed through the Baxterization of the Ř-matrix

Ři(u) = 1

ζ(u)

(
u1/2Řii+1 − u−1/2Ř−1

ii+1

)
, (15)

where ζ(u) = qu−1/2 − q−1u1/2. The inverse of Ři(u) is given by Ř−1
i (u) = Ři(u

−1) and
satisfies the unitary relation Ři(u)Ři(u

−1) = 1.
If we rewrite equation (15) in terms of the affine Hecke algebra, we have

Ři(z, w) := Ři

(
u = z

w

)
= qz − q−1w

qw − q−1z
1 +

z − w

qw − q−1z
ei . (16)

The Yang–Baxter equation for Ri(u) = Ři(u)P is written as

Řii+1

( z

w

)
Ři+1i+2(z)Řii+1(w) = Ři+1i+2(w)Řii+1(z)Ři+1i+2

( z

w

)
. (17)

2.3.2. q-symmetrizers in terms of Ř. We will show that the q-symmetrizers Yk can be
expressed in terms of the Ř-matrix. For later convenience, we define

Ľi(m) := 1

µm

Ř
( z

w
= q−2m

)
= ei − µm−1 (18)

for m ∈ N = {1, 2, . . .}.
The recursive relation of the q-symmetrizer Ym+1 (3) is rewritten as

Ym+1(ei, . . . , ei+m) = Ym(ei, . . . , ei+m−1)Ľi+m(m + 1)Ym(ei, . . . , ei+m−1), (19)

with Y1(ei) = Ľi(1). From equation (19), a q-symmetrizer is written as a product of Ľi’s.
The Hecke relation eiei±1ei − ei = ei±1eiei±1 − ei±1 is rewritten in terms of the

q-symmetrizer as Y2(ei, ei±1) = Y2(ei±1, ei). This relation is equivalent to the Yang–Baxter
equation (17) with a specialization of the spectral parameters. The Yang–Baxter equation in
terms of Ľ-matrix is written as

Ľii+1(u − v)Ľi+1i+2(u)Ľii+1(v) = Ľi+1i+2(v)Ľii+1(u)Ľi+1i+2(u − v), (20)

where u, v ∈ N. The Hecke relation is obtained by setting (u, v) = (2, 1).
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2.4. Graphical representation of q-symmetrizers

In this subsection, we introduce the graphical representation of the Yang–Baxter equation (20).
Then, we also consider the graphical representation of the q-symmetrizers by using the notation
used in the above subsection. It is well known that the Yang–Baxter equation for the IRF model
(see for example [28]) can be expressed as the equivalence between different rhombus tilings
of a hexagon. In our novel graphical depiction, the Yang–Baxter equation is also expressed
as the equivalence of two hexagons. There are, however, nice features in our method. A
rhombus represents the Ř-matrix. An integer on the face of the rhombus indicates the spectral
parameter of the Ř-matrix. Furthermore, the q-symmetrizers are expressed as polygons. These
properties play an important role when we construct a state of the Ak generalized model in
section 4.2.1.

The Yang–Baxter equation. A rhombus represents a Ľ-matrix having the spectral parameter
on the face of it:

Ľi(m) = (21)

We call the edges of a rhombus in equation (21) the ith and (i +1)th edges. The ith and (i +1)th
edges indicate the index i of Ľi . We call the two corners put between ith and (i + 1)th edges
up and down corners, whereas the other two corners right and left corners. We may omit the
name of edges without any confusion.

Accordingly, the Yang–Baxter equation (20) of the Hecke type is graphically expressed
as

= . (22)

Note that the Ľii+1-matrix acts on the ith and (i + 1)th edges. The order of piling rhombi from
the bottom corresponds to the order of Ľ from the right to left (since we consider the left ideal
later). A rhombus with u − v on the lhs of equation (22) is piled in the way that the bottom
ith and (i + 1)th edges of the rhombus are attached to the ith and (i + 1)th edges of the other
two rhombi.

The q-symmetrizer Yk . As mentioned above, the q-symmetrizer Y2 is obtained by choosing
the special values of the spectral parameters in the Yang–Baxter equation. From the fact
that each side of the Yang–Baxter equation is graphically expressed as a rhombus tiling of a
hexagon, Y2 is also expressed graphically as the hexagon. More generally, we will see that the
q-symmetrizer Yk has a graphical representation by a 2(k + 1)-gon.

Without loss of generality, we consider Yk = Y
(1)
k . We rewrite the q-symmetrizer Yk as

Yk = Yk−1Ľk(k)Yk−1

= αk−2Yk−2Ľk−1(k − 1)Ľk(k)Yk−1

= CĽ1(1)Ľ2(2) · · · Ľk(k)Yk−1, (23)

where C is a constant written in terms of αl, 1 � l � k − 1.

tile_L.eps
YB_right.eps
YB_left.eps
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Figure 1. The graphical representation of the q-symmetrizers Y3 and Y4.

Figure 2. Equivalent expressions of the q-symmetrizer Y3. Elementary moves of rhombus tilings
are realized by the Yang–Baxter equation (22).

Equation (23) implies that Yk is obtained by piling k rhombi corresponding to a sequence
of Ľ over a 2k-gon corresponding to Yk−1. Then, we have a 2(k +1)-gon for the q-symmetrizer
Yk .

Example. The q-symmetrizers Y3 and Y4 are expressed as an octagon and a decagon,
respectively (see figure 1).

Equivalent expressions of Yk−1. We have seen that the q-symmetrizer Yk−1 corresponds to a
rhombus tiling of a 2k-gon. However, we have many other ways of equivalent rhombus tiling
of the 2k-gon under a sequence of elementary moves of rhombi. There are two equivalent
ways of rhombus tiling of a hexagon as in equation (22). An elementary move is an operation
which changes a way of tiling from the lhs to rhs and vice versa in equation (22). Figure 2
shows all equivalent rhombus tilings of an octagon for the q-symmetrizer Y3.

3. Spin representation

In this section, we will consider the spin representation of the affine Hecke algebra Ĥ
(k)
N with

the cylindric relation (9) or (10). We first introduce the well-known spin representation of
the Hecke algebra [29, 30], then introduce the affine generator by the twist. We show that
the obtained spin representation actually satisfies the defining relations of the Hecke algebras
H

(k)
N (τ ) and the cylindric relations.

3.1. Hecke algebra

We first consider the spin representation of the Hecke algebra H
(k)
N (τ ) and show the quotient

relation.
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Let us consider a representation (χ, V ⊗N) of the quotient Hecke algebra H
(k)
N (τ ) where

χ : H
(k)
N (τ ) → End(V ⊗N) and V ∼= C

k is a vector space with the standard orthonormal basis
{|i〉|1 � i � k}. We denote |i1〉 ⊗ |i2〉 ⊗ · · · |in〉 ∈ V ⊗n by |i1i2 · · · in〉 for brevity. 〈i| is the
dual base of |i〉 with the inner product 〈i|j 〉 = δij .

We introduce ĕ ∈ End(V ⊗2) which acts on |ij 〉 as

ĕ|ij 〉 = (1 − δij )((−q)sign[j−i]|ij 〉 + |ji〉), (24)

or equivalently, in terms of the standard basis of glk [29]:

ĕ =
k∑

a,b=1

Eab ⊗ Eba −
k∑

a,b=1

qsign[b−a]Eaa ⊗ Ebb, (25)

where Eab is a k × k matrix whose elements are (Eab)ij = δaiδbj .
A generator of the Hecke algebra has a representation of End(V ⊗N) and is written in

terms of ĕ:

χ(ei) = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1

⊗ ĕ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−i−1

, (26)

where I is the k × k identity matrix. Below, we write as ei instead of χ(ei).
It is straightforward to show that ei satisfies the defining relations of the Hecke algebra

(1). We need to show that this representation actually satisfies the quotient relation.

Proposition 3.1 ([30]). In the representation (χ, V ⊗N), the generators ei’s satisfy the quotient
relation

Yk(ei, . . . , ei+k−1) = 0, for i = 1, . . . , N − k. (27)

The q-symmetrizer satisfies the following properties in the spin representation. Below,
we restrict the action of Y

(i)
k−1 to W = V ⊗k , where V ⊗N = V ⊗i−1 ⊗W ⊗V ⊗N−i−k , since Y

(i)
k−1

acts as an identity except on W .

Proposition 3.2. For a given k, the q-symmetrizer Y
(i)
k−1 has only one eigenvector (up to

normalization) with a non-zero eigenvalue in V ⊗k and its eigenvalue is αk−1 given by (12).

Proof. We will show that we have a simultaneous eigenvector of ei’s and that is also the only
eigenvector of the q-symmetrizer. From the spin representation, we only need to prove that
Yk−1 = Y

(1)
k−1 has only one eigenvector with a non-zero eigenvalue. Let v = |v1 · · · vk〉 be a

vector in V ⊗k . From proposition 3.1, a non-vanishing v satisfies vi �= vj for any i, j . We
denote by Ṽ ⊗k the subspace of V ⊗k where 1, . . . , k appear exactly once in {v1, . . . , vk}. Note
that non-vanishing eigenvectors of Yk−1 are in Ṽ ⊗k . From proposition 2.1, eigenvectors of
Yk−1 are also simultaneous eigenvectors of all the Hecke generators ei’s and vice versa. The
eigenvectors of ei with non-zero eigenvalue have the form

| · · · vivi+1 · · · 〉 + (−q)sign[vi−vi+1]| · · · vi+1vi · · · 〉. (28)

Starting from |v〉 = |v1 · · · vk〉 = |12, . . . , k〉 ∈ Ṽ ⊗k , we may fix the simultaneous eigenvector
of all ei’s (up to the overall constant) as follows:

|v0〉 =
∑
s∈Sk

(−q)l(s)|s(v)〉, (29)

where v0 ∈ Ṽ ⊗k,Sk is the symmetric group and |s(v)〉 = |vs(1)vs(2) · · · vs(k)〉. The function
l(s) satisfies l(ss ′) = l(s) + l(s ′) and

l(sii+1) =
{

1, vi > vi+1

−1, vi+1 > vi,
(30)
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where sii+1 ∈ Sk is the transposition between vi and vi+1. Another choice of |v〉 gives just
the difference of overall normalization constant. Since v0 is constructed as the simultaneous
eigenvector of ei’s, v0 is also the eigenvector of Yk . The uniqueness of the eigenvector is
guaranteed by construction.

The eigenvalue of |v0〉 with respect to ei is τ . Then, the action of Yk−1 on |v0〉 is
Yk−1|v0〉 = ỹk−1|v0〉, where ỹk−1 = Yk−1(τ, . . . , τ ) is a c-number. ỹk−1 satisfies the same
recurrence relation and the initial condition as (11). This means ỹk−1 = αk−1. �

For later convenience, we write down the inner product of |v0〉 (the eigenvector of Yk−1

with non-zero eigenvalue) in terms of the Chebyshev polynomials of the second kind.

Corollary 3.3. Let |v0〉 be the eigenvector of the q-symmetrizer Yk with the non-zero
eigenvalue. The inner product Ik = 〈v0|v0〉 in the representation (χ, V ⊗N) is calculated
as q−k(k−1)/2 ∏k

i=1 Ui .

Proof. From proposition 3.2, the eigenvector |v0〉 can be rewritten as

|v0〉 =
∑
s∈Sk

(−q)l(s)|s(v)〉 (31)

=
∑

1�v1�k

∑
s̃∈Sk−1

(−q)−(v1−1)+l(s̃)|v1s̃(v\v1)〉, (32)

where v = |12, . . . , k〉 and |v1s̃(v\v1)〉 = |v1vs̃(2) · · · vs̃(k)〉. The inner product Ik is then
calculated as

Ik = 〈v0|v0〉 =
∑
s∈Sk

(−q)2l(s)

=
∑

1�v1�k

q−2(v1−1)
∑

s̃∈Sk−1

q2l(s̃) = (−q)−(k−1)Uk−1Ik−1

= (−q)−k(k−1)/2
∏

1�i�k−1

Ui. (33)

�

3.2. Affine Hecke algebra

Let us introduce a linear operator ẽ ∈ End(V ⊗ V ) in the basis of glk by

ẽ =
k∑

a,b=1

q2(a−b)Eab ⊗ Eba −
k∑

a,b=1

qsign[b−a]Eaa ⊗ Ebb. (34)

This ẽ is obtained by the twist, i.e., ẽ = 
−1ĕ
, where the twist 
 is given by

 = I ⊗ 
̃, 
̃ = diag(q−(k−1), q−(k−3), . . . , qk−1).

It is also straightforward to show that the spin representation (34) of ẽ satisfies the
following two properties aff1–2.

(aff1) ẽ2 = τ ẽ

(aff2) ẽ12e23ẽ12 − ẽ12 = e12ẽ23e12 − e12,

where ẽ is a k ×k matrix and ẽ12 = ẽ⊗ I, ẽ23 = I⊗ ẽ and ẽ13 = P23ẽ12P23 (P is a permutation
matrix).

Now we are ready to construct an additional generator eN which allows us to have the
affine Hecke algebra. Let us introduce the shift operator ρ acting on the basis in V ⊗N . Let
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v = |v1 · · · vN 〉 be a base in V ⊗N . Then, ρ : V ⊗N → V ⊗N is defined by ρ : v 	→ |v2 · · · vNv1〉.
We define eN acting on V ⊗N as

eN = ρ−1(I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−2

⊗ẽ)ρ. (35)

By construction, the defining relations (1) of the Hecke algebra become cyclic and there
exists the cyclic operator σ such that σei = ei−1σ for any i ∈ Z/NZ. The cyclic operator σ

in the spin representation is explicitly given by

σ = (
ρ)−1. (36)

Here 
 = I
⊗N−2 ⊗ 
̃. Note that σN is the identity. In this way, we construct the affine Hecke

generators {e1, . . . , eN , σ } in the spin representation.

Remark. There may be other linear operators in End(V ⊗ V ) which satisfy the properties
aff1 and aff2. If we set σ = ρ−1 instead of (36), we also have another affine Hecke algebra.
However, this algebra does not satisfy the cylindric relation (may satisfy another kind of
vanishing condition).

The affine algebra Ĥ
(k)
N can be regarded as a natural generalization of the affine TL algebra

on a cylinder. As we will see in the next paragraph, the affine Hecke algebra Ĥ
(k)
N satisfies

the cylindric relation introduced in section 2. To relate this affine Hecke algebra to the loop
models, we need to have a further condition for ẽ, which comes from the weight of a ‘loop’
surrounding a cylinder. Although the graphical way to describe a ‘loop’ model corresponding
to the Ak-vertex model is not known as far as the authors know, it is natural to assign that the
weight of a ‘loop’ is related to the Chebyshev polynomials of the second kind. This is realized
by the cylindric relation (see section 4.2).

Let us consider the case k = 2. The spin representation of ẽ is given by

ẽ =


0 0 0 0
0 −q q−2 0
0 q2 −q−1 0
0 0 0 0

 . (37)

Note that ẽ = 
−1ĕ
, where 
 = I ⊗ 
̃ and 
̃ = diag(q−1, q), that is, ẽ is the twist of ĕ.
This ẽ is equivalent to the boundary considered in [6, 22].

Cylindric relation and extra vanishing conditions. We need to show that the above spin
representation satisfies the cyclicity of the vanishing conditions (2) and the cylindric relation
(9) or (10).

The vanishing conditions (2) of the quotient Hecke algebra become cyclic by adding the
extra generator eN when n � 2. We omit the proof but similar to proposition 3.1 because of
the properties aff1 and aff2.

We will show that the spin representation satisfies the cylindric relation (9) or (10) in the
following two propositions.

Proposition 3.4. In the representation (χ, V ⊗N) of the affine Hecke algebra, the cylindric
relation for N = k is given by

Yk−1(e1, . . . , ek−1)(ek − τ)Yk−1(e1, . . . , ek−1) = 0. (38)
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Proof. By using propositions 3.2 and 3.3, the q-symmetrizer Y
(1)
k−1 is written as

Yk−1 = αk−1

Ak−1
|v0〉〈v0|, (39)

where αk−1 is given by (12) and Ak−1 = (−q)−k(k−1)/2 ∏
1�i�k−1 Ui .

Equation (38) is rewritten as 〈v0|ek|v0〉 = τ 〈v0|ek|v0〉. By the definition |v0〉 =∑
s∈Sk

(−q)l(s)|s(v)〉, we have

〈v0|eN |v0〉 =
∑

s,s ′∈Sk

(−q)l(s)+l(s ′)〈s ′(v)|ek|s(v)〉. (40)

Due to the representation (34) of ek , the expectation value 〈s ′(v)|ek|s(v)〉 is shown to be
non-zero for either s ′ = s or s ′ = s1ks, where s1k is the transposition operator. Therefore, we
have

l(s ′) =
{
l(s), s ′ = s

l(s) − 2(vs(k) − vs(1)) + sign[vs(k) − vs(1)], s ′ = s1ks
(41)

and

〈s ′(v)|ek|s(v)〉
〈s ′(v)|s(v)〉 =

{
(−q)sign[vs(1)−vs(k)], s ′ = s

(−q)2(vs(k)−vs(1)), s ′ = s1ks.
(42)

Substituting equations (42) and (41) into equation (40), we finally obtain

〈v0|ek|v0〉 =
∑

s,s ′∈Sk

(−q)l(s)+l(s ′)〈s ′(v)|ek|s(v)〉

=
∑
s∈Sk

(−q)2l(s)(−q − q−1)〈s(v)|s(v)〉

= τ 〈v0|v0〉. (43)

�

Proposition 3.5. In the case of N = nk, n � 2, the affine Hecke generators {e1, . . . , eN } in
the representation (χ, V ⊗N) satisfy the following relation:

Yq-sym ·
n−1∏
i=1

(eik − µk−1) · (enk − τ) · Yq-sym = 0, (44)

where Yq-sym = ∏n−1
i=0 Y

(ik+1)
k−1 .

We leave the proof of proposition 3.5 to appendix A.1. Instead, we see the intuitive
meaning of the cylindric relations by the graphical expressions introduced in section 2.4

The cylindric relation is expressed by means of a rhombus tiling with integers. Rewrite
the cylindric relations (44) as

Yk−1(e1, . . . , ek−1)Ľk(k)Yk−1(e1, . . . , ek−1) = µ−1
k αk−1Yk−1(e1, . . . , ek−1), (45)

for the case where N = k. Here, αk is given by equation (12). And

Yq-sym ·
(

n∏
i=1

Ľik(k)

)
· Yq-sym = �n−1

k µ−1
k αn

k−1Yq-sym, (46)

for the case where N = nk with n � 2. Here, �k = µk − µk−1. The graphical representation
of these, which is the generalization of equation (61) (see section 4.1), indicates that it is
possible to truncate piles of rhombi by some height.
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Example k = 3, n � 2. We have the following graphical representation:

= Cn

(47)

where Cn = �n−1
3 µ−1

3 αn
2 . Regular octagons are the q-symmetrizers Y3. A rhombus with

integer m represents Ľi(m). We choose one of the equivalent expressions of the q-symmetrizer
such that two octagons share the same rhombus with integer 1. The rhombus for the operator
ĽN is divided into two parts since the cylinder is cut along the dotted line.

Remark. When N = k, the cylindric relation can be regarded as a modification of the
vanishing condition (2), although relation (2) is no longer satisfied. However, when n � 2,
the vanishing relations (2) become cyclic and the cylindric relation (44) is a highly non-trivial
relation.

3.3. Ř-matrix

We give the spin representation of Ř introduced in section 2. The R-matrix of the glk spin
chain model is given by

R = q

k∑
a=1

Eaa ⊗ Eaa +
∑

1�a �=b�k

Eaa ⊗ Ebb + (q − q−1)
∑

1�b<a�k

Eab ⊗ Eba. (48)

We also introduce the permutation operator P and the q-permutation operator as follows:

P ≡ P12 = P21 =
k∑

a,b=1

Eab ⊗ Eba, (49)

Pq

12 =
k∑

a=1

Eaa ⊗ Eaa + q

k∑
a<b

Eab ⊗ Eba + q−1
k∑

a>b

Eab ⊗ Eba

=
k∑

a,b=1

qsign[b−a]Eab ⊗ Eba. (50)

(I ⊗ I)q =
k∑

a,b=1

q2(a−b)Eaa ⊗ Ebb. (51)

The Baxterized R-matrix is given by

R12(u) = a(u)

ζ(u)
P12 +

b(u)

ζ(u)

(
I ⊗ I − Pq

12

)
, (52)

where a(u) = qu1/2 − q−1u−1/2 and b(u) = u1/2 − u−1/2. Note that Ř = RP . We also have

RN1(u) = a(u)PN1 + b(z)
(
(I ⊗ I)q − Pq

N1

)
(53)

corresponding to the affine generator eN . The R-matrix (and Ř-matrix) satisfies Ri+1i+2 =
σ−1Rii+1σ for 1 � i � N − 1 and RNN+1 = RN1.

cylindric-k3_1.eps
cylindric-k3_2.eps
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4. Ak generalized model on a cylinder

We first briefly review the O(1) loop model on a cylinder, which is the k = 2 case of the Ak

generalized model on a cylinder in subsection 4.1. We introduce a new model which we call
Ak generalized model on a cylinder in subsection 4.2. The way of constructing states is given
by the use of the rhombus tiling. The relation of our model to the spin chain model is stated
in section 4.2.2. We obtain the sum rule of the Ak generalized model by solving the q-KZ
equation at the Razumov–Stroganov point in section 4.2.3. The solution is identified with a
special solution of the q-KZ equation in section 4.3.

4.1. O(1) loop model on a cylinder

4.1.1. The O(1) loop models. In this subsection, the results of the O(1) loop models are
presented. Here is the summary of the result if we take k = 2 in section 4.2. See also [18, 22]
for some results and details.

Definition of the O(1) loop models. The inhomogeneous O(1) loop model is defined on a
semi-infinite cylinder of a square lattice with even perimeter 2n, where squares on the same
height are labelled in order cyclically from 1 to 2n. Spectral parameter zi for 1 � i � 2n is
attached to each vertical strip. We attach two kinds of unit plaquettes

, (54)

on the square. The weight of the plaquettes in the ith vertical strip is given by the R-matrix as

R(zi, t) = qzi − q−1t

qt − q−1zi

+
zi − t

qt − q−1zi

, (55)

where t is a horizontal spectral parameter.

States and the boundary conditions. Since red (or grey) lines on a plaquette are non-
intersecting, a site is connected to another site by a non-intersecting red (or grey) line. From
this, all the 2n sites are connected to each other forming a link. The space of states for the
O(1) loop model is the set of link patterns. We denote a state by π , or |π〉.

We introduce the direction of links and the boundary of the cylinder. Let us consider a
conformal map from the semi-infinite cylinder to a disk with perimeter 2n. The infinite point
is mapped to the origin of the disk. The two boundary conditions are classified by whether we
regard the origin of the disk as an punctured point or not as follows.

• Periodic boundary conditions (or unpunctured case). The infinite point is regarded as an
unpunctured point. In this case, we focus only on connectivities between the sites.

• Cylindric boundary conditions (or punctured case). The infinite point is regarded as
a punctured point. Introducing the punctured point corresponds to introducing a seam
between the first and the 2nth sites on the cylinder. The direction of a link between sites i
and j is measured by (−1)w, where w counts how many times the link crosses the seam.

We assign to a loop (even a loop surrounding the punctured point) the weight τ =
−(q + q−1) when q is a generic value. Note that when q is a cubic root of unity, i.e.,
q = −exp(π i/3), the weight of a loop is τ = 1.

Transfer matrix and q-KZ equation. The row-to-row transfer matrix of the O(1) loop model
(in both periodic and cylindric cases) is given by

T (t |z1, . . . , z2n) = Tr0(R1(z1, t)R2(z2, t) · · · R2n(z2n, t)), (56)

tilea.eps
tileb.eps
tilea.eps
tileb.eps
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where the trace is taken on the auxiliary quantum space. The transfer matrix naturally acts on
a state. We want to compute the weight distribution �(z1, . . . , z2n) = ∑

π �π |π〉 such that

T (t |z1, . . . , z2n)�(z1, . . . , z2n) = �(z1, . . . , z2n). (57)

Instead of the eigenvector problem (57), it is enough to consider more generally the q-KZ
equation with two parameters q and s (see [13, 18])

Ř(zi, zi+1)�(z1, . . . , z2n) = τi,i+1�(z1, . . . , z2n), 1 � i � 2n − 1

Ř(z2n, sz1)�(z1, . . . , z2n) = �(s−1z2n, . . . , sz1),
(58)

where τi,i+1 is an operator acting on a polynomial f (zi, zi+1) as τi,i+1f (zi, zi+1) = f (zi+1, zi).
When s = 1, the eigenvector of the transfer matrix with eigenvalue unity is regarded as
the solution of the q-KZ equation. This is realized at the Razumov–Stroganov point, i.e.
q = −exp(π i/3) in the link pattern basis [18, 22]. The solution of the q-KZ equation with
generic q and s = q6 (resp. s = q3) was obtained on the link patterns with periodic (resp.
cylindric) boundary conditions in [13] (resp. [14]).

Below, we construct the space of link patterns in the cylindric case, on which the affine
Temperley–Lieb algebra acts.

4.1.2. Word representation (cylindric case). In this subsection, the parameter q takes a
generic value.

Word representation and cylindric relation. It is well known that the word representation of
link patterns (periodic case) is constructed in the left ideal of the Temperley–Lieb algebra.
The lowest state ω is given by the product of q-symmetrizer Y1, ω := ∏n

i=1 e2i−1. All the
other states are obtained by taking actions of a sequence of ei’s, i.e. words.

We can construct all the states for the cylindric case in the similar way from ω. However,
the additional operator e2n appears in the word representation. It is natural that the graphical
representation of the generators ei, 1 � i � 2n − 1, and e2n of the affine Temperley–Lieb
algebra is

ei = , e2n = . (59)

The cylindric relation (44) can be written in terms of the affine Temperley–Lieb generators as
n∏

j=1

e2j−1

n∏
i=1

e2i

n∏
j=1

e2j−1 = τ 2
n∏

j=1

e2j−1. (60)

This relation can be depicted using the graphical representation as

= τ 2 . (61)

Note that the weight of a loop surrounding the cylinder is τ and the factor τ 2 in (60) comes
from the two loops on the rhs of equation (61).

The highest state. We write as
←−∏

1�j�r sj := srsr−1 . . . s1 where the order of products is clear,
and (sr . . . s1)

∨(m) := sr . . . s1+(r+m)/2s(r−m)/2 . . . s1 for r > m � 0 and r ≡ m(mod 2). We

ein.eps
e2n.eps
cyclic_TLgraph.eps
cyclic_TLgraph2.eps
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define (sr . . . s1)
∨(m) = 1 for m � r and (sr . . . s1)

∨(m) = sr . . . s1 for m < 0. For example,( ←−∏
1�j�5sj

)∨3 = s5s1 and
( ←−∏

1�j�6sj

)∨2 = s6s5s2s1.
The highest state )) . . . ((( is given in terms of the generators as

←−∏
0�j�n/2�

Ẽj , (62)

where

Ẽj =



 ←−∏
1�l�n−1

e2l

∨(2j)

· e2n ·
(

n∏
l=1

e2l−1

)∨(2j−1)

, for n odd

 ←−∏
1�l�n−1

e2l

∨(2j+1)

· e2n ·
(

n∏
l=1

e2l−1

)∨(2j)

, for n even

(63)

for j � 0. Other states are obtained as words by acting a sequence of the generators on the
highest state.

Example n = 2. We have six bases. The correspondence of representation by parentheses
and by words is given as follows: ()() ↔ e1e3, (()) ↔ e2e1e3, )()(↔ e2e4e1e3, ())(↔
e1e2e4e1e3, )(() ↔ e3e2e4e1e3 and ))((↔ e4e1e3. Then, the Temperley–Lieb generators are
given by

e1 =



τ 1 0 0 τ 2 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 τ 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, e2 =



0 0 0 0 0 0
1 τ 0 0 0 0
0 0 τ 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

σ =



0 0 τ 0 0 0
0 0 0 τ 0 0

τ−1 0 0 0 0 0
0 0 0 0 0 τ−1

0 τ−1 0 0 0 0
0 0 0 0 τ 0


, (64)

and e3 = σe2σ
−1 and e4 = σe3σ

−1. Note that they satisfy the defining Hecke relations and
the cylindric relation e1e3e2e4e1e3 = τ 2e1e3.

Relation to the spin chain. An affine Temperley–Lieb generator ei ∈ End(C2 ⊗ C
2) in the

spin-1/2 representation. This allows us to rewrite a link pattern in terms of the spin basis [6].
For a given directed link between the site i and j (i < j), a spin vector is written as

|↑↓〉ij + (−q)−1|↓↑〉ij , for i → j, (65)

|↑↓〉ij + (−q)−3|↓↑〉ij , for j → i. (66)

In the periodic case, every link is expressed as equation (65) since we do not see the direction.
In the cylindric case, however, we take a vector of the type (65) for a link uncrossing the seam
of the cylinder and a vector of the type (66) for a link crossing the seam. In both cases, take
the tensor product of associated vectors for a link pattern.
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4.1.3. q-KZ equation and the sum rule. The q-KZ equation connects the polynomial
representation of the affine Temperley–Lieb algebra and the word representation of the algebra
[14, 22]. When τ = 1, the q-KZ equation can be explicitly solved. Then, it is found that the
sum rule for � is the product of two Schur functions. When we take the homogeneous limit
all zi → 1, the sum is proportional to the total number of the 2n × 2n half-turn symmetric
alternating sign matrices (HTSASMs) (see also [2, 4, 5, 20]).

4.2. Ak generalized model

We define the Ak generalized model on a cylinder. This is the Ak generalization of the
O(1) loop model on a cylinder in section 4.1. This generalization is done by replacing
the affine Temperley–Lieb algebra and state space labelled by link patterns with the affine
Hecke algebra and state space labelled by unrestricted paths, respectively. In section 4.2.1,
we explicitly construct a state by the use of the graphical depiction of the q-symmetrizer
introduced in section 2.4. The relation of our model to the spin chain model is discussed in
section 4.2.2.

We set up the q-KZ equation (58) where Ři(z, w) is now the standard trigonometric
Ř-matrix defined in (16). We examine the q-KZ equation with two parameters s = 1 and
q = −exp(π i/k + 1). The sum rule for the solution �(z) is investigated in section 4.2.3.

4.2.1. States for Ak generalized model. Before constructing the states for the Ak generalized
model, we introduce some definitions and notations. Hereafter, we set N = nk. The parameter
q is generic in this subsection.

Definition 4.1. We define a set of unrestricted paths and restricted paths.

(1) An unrestricted path π := π1π2 · · ·πnk of length nk is a set of nk integers satisfying

1 � πi � k for 1 � i � nk

{i|πi = j, 1 � i � nk} = n for 1 � j � k.
(67)

(2) If an unrestricted path π satisfies {i|πi = j, 1 � i � l} � {i|πi = j + 1, 1 � i � l}
for all 1 � j � k and 1 � l � nk, the path π is said to be a restricted path.

The number of unrestricted paths is (nk)!/(n!)k . The number of restricted paths is the same as
the number of the standard Young tableaux with shape k ×n, i.e., (nk)!

∏
0�j�k−1 j !/(n+ j)!.

A path is graphically depicted by a line graph on a cylinder. A line graph π ′ of length N
consists of N + 1 vertex and N edges. The ith and (i + 1)th vertices are connected by the ith
edge for all 1 � i � N . The first and (N + 1)th vertices are identified in the case of a line
graph on a cylinder. When the angular coefficient of the ith edge is π(k − 2m + 1)/2k with
1 � m � k, the ith edge is said to be of type m. A path π is identified with a line graph of
length nk on a cylinder where the ith edge is of type πi .

In section 2.4, we have seen that a q-symmetrizer Yk corresponds to a 2(k +1)-gon. Recall
that Yq-sym is the product of the q-symmetrizers.

Definition 4.2. The graphical representation of Yq-sym = ∏n−1
i=0 Yk(eik+1, . . . , e(i+1)k) is the

graph where we put n2(k + 1)-gons side by side. The terminal vertices are identified as the
graph is on a cylinder.
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Example. The graphical expression of Yq-sym is shown for k = 6. The cylinder is cut
along the dotted line.

Yq-sym = . (68)

We have nk edges on the top of the graphical representation of Yq-sym. From
definitions 4.1 and 4.2, we have a corresponding path as follows.

Proposition 4.3. The top edges of Yq-sym are identified with the path π
, where π

pk+q = q

for 0 � p � n − 1 and 1 � q � k.

Consider a path π that satisfies πi > πi+1 for a given i. In this situation, we can pile
a rhombus with a positive integer m, corresponding to Ľi(m), locally over the line graph
consisting of the ith and the (i + 1)th edges. Then, we obtain a new path π ′ satisfying

π ′
j = πj for j �= i, i + 1

π ′
i = πi+1, π ′

i+1 = πi,
(69)

where πkn+1 = π1. We introduce an order of paths such that if (69) is satisfied the path π ′ is
lower than π . The order of paths is the same as the one of tiling rhombi.

Definition 4.4. We pile rhombi from bottom to top over the graphical representation of
Yq-sym, or equivalently, over the path π
. We pile rhombi one by one following the rule in
equation (69).

From the above definition, we have a natural map from a rhombus tiling over π
 to an
unrestricted path. The top edges of the rhombus tiling are identified with a line graph on a
cylinder and a path.

Definition 4.5. We introduce a word and a reduced word.

(1) Let l be a positive integer. M = {mj |1 � mj � k − 1, 1 � j � N} and I = {ij |1 �
ij � N, 1 � j � l} are sets of positive integers. A word w of length l is defined as

w = Ľi1(m1) . . . Ľil (ml)Yq-sym (70)

for some {l,M, I } and Yq-sym = ∏n−1
i=0 Y

(ik+1)
k . By definition, Yq-sym is itself a word of

length zero. The length of a linear combination of words is identified by the maximum
length of words in it.

(2) A word w is said to be equivalent to another word w′ if we obtain w from w′ only by using
the defining relations of the affine Hecke algebra, (1), (2) and the cylindric relations (9)
or (10).

(3) A word w (of length l) is said to be a reduced word if there exists no equivalent word of
length l′ with l′ < l.

Hereafter, a word means a reduced word.
The word representation is the representation of the affine Hecke algebra on the left ideal

Ĥ
(k)
N Yq-sym.

Remark. We restrict ourselves to 1 � mj � k − 1 in definition 4.5. Since Ľi(m) =
Ľi(m − 1) + (µm−1 − µm), a word can be rewritten in terms of other words. The vanishing

left_ideal.eps


The Ak Generalization of the O(1) loop model on a cylinder 8941

condition (2) and the graphical representation of a q-symmetrizer in section 2.4 imply that
1 � mj � k − 1 is enough to have non-vanishing words.

From these definitions, we have the following map from a rhombus tiling to a word. For
a given rhombus tiling over π
, we have a natural map from a rhombus tiling with integers to
a word w as equation (70).

The above definitions and proposition are summarized as follows. We have a word and
an unrestricted path π for a rhombus tiling with integers. There are, however, many rhombus
tilings with integers whose top edges are characterized by the path π , whereas we have only
one word for a given rhombus tiling with integers.

We want to get a state |π〉 labelled by an unrestricted path π satisfying the following
properties.

(P1) If π satisfies πi > πi+1, the state is invariant under the action of ei , i.e. ei |π〉 = τ |π〉.
(P2) If π satisfies πi < πi+1, the action of ei is given by ei |π〉 = ∑

π ′ Ci,π,π ′ |π ′〉. If
the coefficient Ci,π,π ′ �= 0, π ′ is obtained by adding a unit rhombus as (69) or a path
below π .

(P3) If π satisfies πi = πi+1, the action of ei is given by ei |π〉 = ∑
π ′ Ci,π,π ′ |π ′〉. If the

coefficient Ci,π,π ′ �= 0, π ′ is a path below π .
(P4) In the properties (P2) and (P3), let us consider the case where ej |π〉 = τ |π〉 for j �= i±1.

Then, for a path π ′ with non-zero Ci,π,π ′ it satisfies ej |π ′〉 = τ |π ′〉.
We will have the one-to-one correspondence

a state |π〉
labelled by a path π

⇐⇒ a rhombus tiling

with integers
⇐⇒ a word. (71)

A specific choice of a rhombus tiling for a given path π allows us to describe the state |π〉 in
terms of a word. The difficulty is to assign positive integers to rhombi for a given rhombus
tiling.

First of all we will describe the following.

Definition 4.6. The word representation of the state |π
〉 is Yq-sym. The graphical
representation of |π
〉 is the graph where we put n(2k + 1)-gon with integers side by side.

Before constructing the state |π〉, we prepare some terminologies and notations. Let us
start to assign integers to every corners of rhombi as follows (see also the explanation below
equation (21)).

Definition 4.7. Consider a rhombus with an integer m. We assign +m (resp. −m) to up and
down (resp. right and left) corners of the rhombus.

Definition 4.8. Suppose that a vertex is shared by some rhombi. We assign to the vertex the
sum of all the integers on corners around the vertex.

Definition 4.9 (zero-sum rule). Suppose that a vertex is completely surrounded by rhombi.
A vertex is said to satisfy the zero-sum rule if the sum of all signed integers on corners
surrounding the vertex is equal to zero.

Note that all the vertices inside 2(k + 1)-gon of a q-symmetrizer Yk satisfy the zero-sum
rule and that the vertices on the top path have integer 1.

Definition 4.10. Fix an integer 1 � l � k. Consider l integers 1 � i1 < i2 < · · · < il � k.
Let btop be a partial path of length l satisfying b

top
j = ij for all 1 � j � l. Fix a path of length
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l, bbot , which satisfies each ij appears once in
{
bbot

i

}
, bbot

1 �= i1 and bbot
l �= il . Connect ith

and (i + l)th vertices by the two line graphs of btop and bbot . The 2l-gon surrounded by the
two line graphs is called a rhombus block Bi,i+l surrounded by btop and bbot .

Proposition 4.11. A positive integer on every rhombus in a given rhombus block Bi,i+l is
uniquely determined by the zero-sum rule and the integers on the vertices, from the (i + 1)th
to the (i + l − 1)th vertices in the top partial path btop.

Proof. Adding some rhombi to Bi,i+l to form a 2l-gon looking like a q-symmetrizer, it is
sufficient to show that positive integers on rhombi in the 2l-gon are uniquely determined by
the condition for Bi,i+l . If we change the rhombus tiling of the q-symmetrizer by elementary
moves, we have the form of the standard rhombus tiling of it as shown in figure 1 but integers
are different. Since two edges b

top
i and b

top
i+1 form a rhombus at the (i + 1)th vertex, the integer

on the rhombus is the same as the integer on the (i + 1)th vertex in btop. The integer on the
next rhombus is determined by the integers on the first rhombus and on the (i + 2)th vertex in
btop. Integers on l − 1 rhombi whose edge is the part of the top partial path btop are determined
one by one in this way. Other remained rhombi form a smaller polygon, i.e., 2(l − 1)-gon. All
the integers for this 2(l − 1)-gon are fixed by the zero-sum rule. Next, by elementary moves
we get back to the equivalent expressions of 2l-gon with integers, one of which contains the
rhombus block Bi,i+l . By taking away certain pieces of rhombi from 2l-gon, we obtain the
block Bi,i+l with integers. �

Recall that we may have many ways of rhombus tilings with integers corresponding to a
path π . All the unrestricted paths are obtained up to a certain finite height starting from the
lowest path π
. For a path we take a rhombus tilings with the smallest number of rhombi.
However, we have many equivalent rhombus tilings because of elementary moves of rhombi.

In particular, we want a rhombus tiling representing a state |π〉 satisfying the properties
from (P1) to (P4). This is possible by using the freedom by elementary moves of rhombi.

Now, we explain the construction of a state |π〉 for a given path π . The procedure is
divided into three steps. First, we fix a rhombus tiling for a given path. We divide the rhombus
tiling into some pieces of rhombus blocks. Second, we assign integers on all the rhombi for the
rhombus tiling. Finally, we identify the state |π〉 with one of the rhombi tiling with integers.

Step 1. Take one of its rhombus tilings which gives a path π . Fix an order of tiling rhombi
from bottom. We have a set of lower paths than π associated with this tiling. Here, we divide
a given rhombus tiling into pieces of rhombus blocks.

Step1-1. Consider a convex partial path πi,i+m := πi · · · πi+m in π satisfying πi−1 > πi <

· · · < πi+m > πi+m+1 for some m � 1. Take a lower convex partial path π ′ as long as
possible such that π ′ contains the partial path πi,i+m. We call π ′ the longest convex
sequence (lc-sequence) associated with πi,i+m. Write down all the longest convex
sequences for the path π .

Step1-2. If two lc-sequences cross at a vertex below the path π , we modify them as follows.
We keep the longer lc-sequence as it is. We split the shorter lc-sequence into two
parts at the crossing point, and take away the part beneath the longer one. See
figure 3. When two crossing sequences have the same length, one of these are to be
shortened in the similar way.

Step1-3. Let us denote by π ′
i,i+l = π ′

i π
′
i+1 · · · π ′

i+l−1 the lc-sequence from the ith to the (i + l)th

vertex, which contains two edges of the last piled rhombus. Let π ′low
i,i+l be a partial

lower path from the ith vertex to (i + l)th as low as possible. Then, we have a rhombus
block Bi,i+l surrounded by π ′

i,i+l and π ′low
i,i+l . If there is a part of another lc-sequence
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Figure 3. A part of a lc-sequence beneath a longer lc-sequence is taken away.

πlc inside the block Bi,i+l , the lowest path π low
i,i+l is to be modified such that π low

i,i+l is
over πlc.

Step1-4. Successively, take away rhombus blocks obtained in Step1-1. Finally, we have the
path π
 and many pieces of rhombus block.

(Step1 ends)
We make an order of piling rhombus blocks as follows. If two blocks are far enough, we may
exchange the order of two blocks. However, if {k|i � k � i + l, j � k � j + l′} � 1 for
given two blocks Bi,i+l and Bj,j+l′ , the order of two blocks is determined by the order of piling
rhombi. Below, we fix an order of piling rhombus blocks. The order of removing rhombus
blocks is the reverse of the piling one.

Step 2. We are ready to assign positive integers to all rhombi for a given rhombus tiling.

Step2-1. Let us consider the first rhombus block in the removing order. We assign the
positive integer 1 to all convex vertices on the top partial path of the block. From
proposition 4.11, we determine integers on all rhombi in this block.

Step2-2. We move to the second rhombus block. If an integer on a convex vertex in the top
partial path of the second block is determined from the integers on the first block
by the zero-sum rule, we assign that integer on the vertex. Otherwise, we assign
1 on them. Again, we determine integers on all rhombi in the second block from
proposition 4.11.

Step2-3. We determine integers on all subsequent rhombus blocks in the similar way. We
continue this process until we assign integers on the all rhombi over π
.

(Step2 ends)

From the construction, all the vertices inside the rhombus blocks satisfy the zero-sum rule.
All the integers on convex vertices in the top path of Yq-sym are 1. However, the zero-sum rule
may not hold on vertices in the top path of Yq-sym. This is because there is a concave vertex
on the top path.

Step 3. We fix integers for a given path π and its rhombus tiling with integers. Then, we
choose one of the rhombi tilings with integers as a state |π〉.

We introduce a sequence of integers µ = (µ1, . . . , µk) for a rhombus tiling µ, where µj

is the total number of the positive integer j written in rhombi. Let µ and ν be rhombus tilings
corresponding to the same path, then we may have the natural order. µ � ν means µk > νk ,
or µk−r = νk−r for all 0 � r � i − 1 and µk−i > νk−i for some 1 � i � k, and µ = ν holds
when µj = νj for all 1 � j � k.

Definition 4.12. We choose a rhombus tiling with µ for a path π such that µ � ν for any
other rhombus tiling with ν. The state |π〉 is identified with the word of rhombus tiling with µ.

(Step3 ends)

Some remarks are in order.
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Remark 3. We briefly explain states constructed in the above way satisfy the properties
from (P1) to (P4). When an integer on a vertex in the path π is one (the vertex is convex
by definition), we can bring the rhombus with one, Ľi(1) = ei , to the convex vertex from
somewhere inside the rhombus tiling by the elementary moves of rhombi. From the first
relation in equation (1), we have the property (P1).

Notice that ei = Ľi(1) and Ľi(m) = Ľi(m − 1) + (µm−1 − µm). The action of ei on |π〉
leads to getting the state π ′ by (69) and other states for lower paths. We have the property
(P2).

Consider a path π and suppose that (P3) holds true for all lower states than π . When π

satisfies πi = πi+1, take an action of ei on the word for the state |π〉. By using the relation
eiej = ej ei for |i − j | � 2, we change the position of ei from left to right as many times
as possible. Then we have a word LeiL′Yq-sym where L,L′ are sequences of Ľ. L does not
include ej , j = i, i ± 1 and L′ = Ľi±1 · · ·. The word eiL′Yq-sym is written in terms of other
words whose paths are lower than that of L′Yq-sym. When L is the identity, we apply the
similar argument for el with a certain l instead of ej by successively using the Hecke relation
eiei±1ei − ei = ei±1eiei±1 − ei±1. From the assumption, eiL′Yq-sym is a linear combination
of the lower states. After acting L on the obtained states, we get eiLL′Yq-sym as a linear
combination of the lower states |π〉.

Finally, the property (P4). Let |π〉 satisfy ej |π〉 = τ |π〉. In the rhombus tiling, we may
pile the rhombus for Ľj (1) at the last. In all the cases πi � πi+1 for i �= j, j ± 1, all the
words in the word expansion of ei |π〉 has the property that ej can be moved the leftmost. (P4)
follows from this observation.

Remark 4. The cyclic operator σ acts on a state |π〉 as follows. Let us introduce the cyclic
operator σ̄ acting on an unrestricted path as σ̄ : π 	→ π ′ = π2 . . . πNπ1. The action of σ is
given by

σ |π〉 = Cσ̄π |σ̄π〉, (72)

with a certain constant Cσ̄π . From σ̄ N = 1, we normalize σN = 1, or equivalently,∏N
k=1 Cσ̄kπ = 1. To see why equation (72) works, consider the action of σ on the state

|π
〉. Note that σei |π
〉 = ei−1σ |π
〉 and epk+q |π
〉 = τ |π
〉 holds for 0 � p � n − 1 and
1 � q � k − 1. The state |σ̄π
〉 is the only state that has the same convexity as σ |π
〉. Then
we have σ |π
〉 ∝ |σ̄π
〉. The action of σ on a state |π〉 = ∏

i∈I Ľi(mi)|π
〉 is written as
σ |π〉 = ∏

i Ľi−1(mi)σ |π
〉 ∝ |σ̄π〉. Equation (72) follows from these considerations.

Remark 5. Although we are dealing with the affine Hecke algebra considered in section 2,
most of the above statements are also available to the Hecke algebra just by reducing the state
space to only restricted paths. The cyclic operator is written in terms of the Hecke generators
as σ = t−1

N−1 . . . t−1
1 . In other words, the vector space spanned by states labelled by unrestricted

paths is reducible in the sense of definition 4.5 if we consider the Hecke algebra.
We have no relation like the cylindric relations for the case of the Hecke algebra and do

not have the rhombus for ĽN since the algebra has no affine generator eN . After all, the piling
of rhombi stops when we have the path 1n2n · · · kn, where ln = l · · · l︸ ︷︷ ︸

n

. The case of restricted

paths is considered in [26].

4.2.2. Relation to spin chain model. From the above construction of states of the Ak

generalized model, we see a bridge between the Ak model and the spin chain model.
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The spin representation of the generators of the affine Hecke algebra gives the R-matrix
of the spin chain as in [16, 17, 29]. The transfer matrix of the Uq(glk) spin chain is

T (u) = Tr0 R01(u)R02(u) · · · R0L(u), (73)

where the trace is taken for the auxiliary quantum space indexed by 0. The Hamiltonian is
given by [29]

H = T −1(u)
dT (u)

du

∣∣∣∣
u=1

=
L−1∑
i=1

Hi,i+1 + HL,1, (74)

where

Hi,i+1 = 1

q − q−1
Pi,i+1R

′
i,i+1 1 � i � L − 1, (75)

HL,1 = 1

q − q−1
PL,1R̃

′
L,1, (76)

R′
ab = 2

(
I ⊗ I − Pq

ab

)
+ (q + q−1)Pab, (77)

R̃′
ab = 2

(
(I ⊗ I)q − Pq

ab

)
+ (q + q−1)Pab, (78)

where P,Pq and P̃q are permutations defined in section 3. We focus on the eigenvector of
the Hamiltonian H.

Suppose that �(z) is the solution of the q-KZ equation (58) at q = −exp(π i/(k + 1)).
Because of the commutation relation between the transfer matrix of the Ak generalized model
and that of the spin chain, the solution � in the homogeneous limit is also the eigenvector
of the spin chain at q = −exp(π i/(k + 1)). Spin chain models have nice properties at this
special point. For instance, it is conjectured that the free-fermion part of the spectrum of the
SUq(k + 1) Perk-Schultz at q = −exp(π i/(k + 1)) is a consequence of nice properties of the
inhomogeneous SUq(k) vertex model [31].

Let us discuss the relation between the states of the Ak generalized model and the vector
space of the spin chain model. All the states of the Ak model are obtained by acting a
sequence of ei’s on the product of the q-symmetrizer, Yq-sym. From proposition 3.2 in the spin
representation, |v0〉 (equation 29) is the only eigenvector of Yq-sym with non-zero eigenvalue.
Together with equation (39), the lowest state |π
〉 is identified with the vector |v0〉 in the spin
representation. All the other states are expressed in terms of vectors in the spin representation
by multiplying |v0〉 by a sequence of Ľ-matrix in the spin representation. This is a natural
generalization of equations (65) and (66). We are not able to write down the expression as
simply as in the case of the XXZ spin chain. However, this allows us to write down the
solution �(z) in terms of the spin representation.

The spin chain considered here is the model of spin-(k − 1)/2. The total number of sites
ni with Sz = (2i − k − 1)/2, 1 � i � k is conserved quantities. The state space of the Ak

generalized model is the vector space of spin vectors with all ni = n in the spin representation.
We can analyse the Ak generalized model in the spin representation by constructing words.

4.2.3. q-KZ equation and the sum rule. We solve the q-KZ equation following the method
used in [18, 22]. The solution is supposed to be the one of the minimal degree. In particular,
we consider the solution with q a root of unity, q = −exp(π i/(k + 1)) and s = 1.

q-KZ equation. The q-KZ equation (58) at (s, q) = (1,−exp(π i/(k + 1))) is rewritten as

ti�(z) = (ei − τ)�(z), 1 � i � N, (79)
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where zN+1 = z1 and ti acts on a polynomial f (z) := f (z1, . . . , zN) as

tif (z) := qzi − q−1zi+1

zi+1 − zi

(τi − 1)f (z) (80)

and τif (. . . , zi, zi+1, . . .) = f (. . . , zi+1, zi, . . .).
Consider the state which is not invariant under the action of ei . The π th element of (79)

is ti�π(z) = −τ�π(z), or equivalently,

(qzi − q−1zi+1)τi�π(z) = (qzi+1 − q−1zi)�π(z). (81)

Since �π(z) is supposed to be a polynomial, �π(z) has a factor (qzi − q−1zi+1).
Let τi,i+l := τi . . . τi+l−2τi+l−1τi+l−2 . . . τi be an exchange operator such that

τi,i+lf (. . . , zi, . . . , zi+l , . . .) = f (. . . , zi+l , . . . , zi, . . .). Then, we have

P̌ (zi, . . . , zi+l )� = τi,i+l�, (82)

where

P̌ (zi, . . . , zi+l ) = Ři(zi+l , zi+1) . . . Ři+l−2(zi+l , zi+l−1)

· Ři+l−1(zi+l , zi)Ři+l+2(zi+l−2, zi) . . . Ři(zi+1, zi). (83)

Consider a state π which is not invariant under the action of ei+j for 0 � j � l − 1. Taking
into account that Ři+l−1(zi+l , zi) ∝ ei+l−1 if we set zi+l = q−2zi , it is shown that

τi,i+l�π(z)|zi+l=q−2zi
= 0. (84)

This means �π(z) has a factor (qzi − q−1zi+l). Therefore, in total �π(z) has factors∏
i�m<n�i+l (qzm − q−1zn).

Highest weight state. The highest state π0 of this model is given by the following path:

(85)

π0 = {πi |πpn+q = k+1−p, 0 � p � k−1, 1 � q � n}. This highest weight is characterized
by

eknπ
0 = τπ0, (86)

eiπ
0 �= π0, for 1 � i � kn − 1. (87)

The number {i|eiπ
0 = τπ0} is minimal. The highest state is invariant (up to a constant) only

under the action of ekn. The entry �π0 is written as

�π0 =
∏

1�i<j�nk

(qzi − q−1zj ), (88)

under the assumption of the minimal degree. The total degree of �π0 is N(N − 1)/2 and the
partial degree is N − 1 for each zi .

Recursive relation. Let us fix an integer m and take a special parameterization of the form

zm+j = q−2j z, 0 � j � k − 1. (89)

This kind of specializations is called the wheel condition in the theory of symmetric
polynomials [32]. The entry �π(z) is non-vanishing only when π has the convex sequence
πm+j = j + 1 for 0 � j � k − 1.

k_higheststate.eps
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For an unrestricted path π of length (n − 1)k, let ϕm,m+k−1(π) be an embedded path of
length nk, where the convex sequence of length k is inserted between πm and πm+1. Then, we
have the following recursion relation:

�ϕm,m+k−1(π)(z)|(89) = Cz
1
2 k(k−1)

 ∏
1�j�N

j �=m,...,m+k−1

(qzi − q−1z)k

 �π(z′), (90)

where z′ = z\{zm, . . . , zm+k−1} and C is some constant depending only q and N. To see this
relation, suppose that �(z) is the minimal degree solution for N variables. The rhs of (90)
satisfies the q-KZ equation for N − k variables. This assures that �(z′) is also the solution
of the q-KZ equation. Note that the total degree and partial degrees with respect to all zi are
consistent.

Razumov–Stroganov point and the sum rule. We define the simultaneous eigencovector v

satisfying

vei = τv, (91)

vσ = v, (92)

or we may write as vŘii+1 = v for all i. The existence of v requires that q be a root of unity.
Together with the vanishing condition of the q-symmetrizer (2), we should have Uk(τ) = 0,
i.e., we should take the Razumov–Stroganov (RS) point q = −exp

(
iπ
k+1

)
. In the below, q is

taken as this RS point.
The sum rule is the formula for the weighted sum, W(z) = v ·� = ∑

π vπ�π(z). One can
show that W(z) is a homogeneous and symmetric polynomial with respect to all the variables
zi , which is led from the fact that the polynomial �π0(z) is homogeneous and the actions of
ti preserve this property. Since τiW(z) = v · τi� = v · Ři� = W(z),W(z) is a symmetric
polynomial. From the recursive relation (90), we have the recursive relation

W(z)|(89) = Cz
1
2 k(k−1)

 ∏
1�j�N

j �=m,...,m+k−1

(qzi − q−1z)k

 W(z′). (93)

The total degree and partial degree of W(z) are
(
N

2

)
and N − 1 respectively. From the above

observation and proposition 5.2, we can show that the sum W(z) is written in terms of Schur
functions sλ(z) as

W(z) = (const.)
k−1∏
l=0

sYn
k,l

(z1, . . . , znk) (94)

with an appropriate overall normalization. Here, the Young diagrams are Yn
k,l := δ(nl, n−1k−l )

with

δ(nl, n − 1k−l ) = (n, . . . , n︸ ︷︷ ︸
l

, n − 1, . . . , n − 1︸ ︷︷ ︸
k

, n − 2, . . . , n − 2︸ ︷︷ ︸
k

, . . . , 1, . . . , 1︸ ︷︷ ︸
k

). (95)

Remark. When k = 2, we have

W(z1, . . . , z2n) = (const.)sY n
2,0

(z1, . . . , z2n)sYn
2,1

(z1, . . . , z2n). (96)

We reproduce the sum for the O(1) loop model on a cylinder [14, 22].
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4.3. Relation to special solutions of the q-KZ equation

In this subsection, we show that the eigenvector of the transfer matrix of the Ak generalized
model at the Razumov–Stroganov point is viewed as the special solution of the q-KZ equation
at (q, s) = (−exp(iπ/(k + 1)), 1) in [15].

In [15, section 4], special solutions of the q-KZ equation were constructed from the
non-symmetric Macdonald polynomial [33] through the action of the affine Hecke algebra.
Consider the q-KZ equation on the spin representation instead of on the space of paths. Let
l and r be positive integers such that 1 � l � min{N − 1, k}, r � 2 and l + 1 and r − 1 are
coprime. We take the specialization

q2(l+1)s−(r−1) = 1. (97)

An element λ = (λ1, . . . , λN) ∈ Z
N is said to be admissible if λ satisfies

λ+
i − λ+

i+l � r − 1 for any 1 � i � n − l, (98)

λ+
i − λ+

i+l = r − 1 only if w+
λ(i) < w+

λ(i + k). (99)

Here, λ+ is the unique dominant in SNλ, i.e. λ+
1 � λ+

2 � · · · � λ+
N , and w+

λ is the shortest
element in SN such that w+

λλ+ = λ. Let µ ∈ Z
N be an element constructed from an dominant

element a ∈ Z
l (see section 4.3 in [15]). Then, the solution of the q-KZ equation of level

l+1
r−1 −N is created from the non-symmetric Macdonald polynomial Eµ with the specialization
(97) and an admissible µ (lemma 4.5 and theorem 4.6 in [15]).

We want to find the solution of the q-KZ equation on the spin basis, which is dual
to the eigenvector of the Ak generalized model. The eigenvector of the transfer matrix of
the Ak generalized model at the Razumov–Stroganov point is characterized by the highest
weight state (88). A monomial

∏N
j=1 z

N−j

j is the dominant one in the expansion of the rhs of
equation (88). Once the highest weight state is fixed, the eigenvector of the Ak generalized
model is uniquely determined.

We restrict ourselves to the special solution of the q-KZ equation with the level 1 − k + 1
k

on the spin basis at the specializations

(l, r) = (k, k + 1), (100)

a = (nk − 1, . . . , k(n − 1)) ∈ Z
k, (101)

(q, s) = (−exp(iπ/(k + 1)), 1). (102)

Note that the dominant monomial of the solution is
∏N

j=1 z
N−j

j .
From the construction, a state of the Ak generalized model is written as a linear

combination of the spin basis (see section 4.2.1 and 4.2.2). Therefore, a suitable linear
combination of the above solution of the q-KZ equation on the spin basis gives the eigenvector
of the transfer matrix of the Ak generalized model at the RS point. The eigenvector of the
Ak generalized model and the special solution of the q-KZ equation share the same dominant
monomial. Together with the uniqueness of the eigenvector of the Ak generalized model, the
eigenvector of the Ak generalized model at the Razumov–Stroganov point coincides with the
special solution of the q-KZ equation characterized by equations (100)–(102). When k = 2,
we can see the solution with (l, r) = (2, 3) as in [14].
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5. Recursive relation for schur functions

Let us denote Young diagrams by Yn
k,l = δ(nl, n − 1k−l ) and Y 1

k,l = δ(1l , 0k−l ), where

δ(nl, n − 1k−l ) = (n, . . . , n︸ ︷︷ ︸
l

, n − 1, . . . , n − 1︸ ︷︷ ︸
k

, n − 2, . . . , n − 2︸ ︷︷ ︸
k

, . . . , 1, . . . , 1︸ ︷︷ ︸
k

). (103)

Proposition 5.1. When q = −exp
(

iπ
k+1

)
, the principal specialization of sY 1

k,l
is given by

sY 1
k,l

(1, q2, . . . , q2(k−1)) = (−1)lq−2l . (104)

Proposition 5.2. Set q = −exp
(

iπ
k+1

)
. The following recursion relation for the Schur function

sYn
k,l

holds:

sYn
k,l

(z1, . . . , znk)
∣∣
wheel = (−)lq−2lzl

(n−1)k∏
i=1

(zi − q2kz)sYn−1
k,l

(z1, . . . , zk(n−1)) (105)

where the wheel condition (the specialization of variables in equation (105), see also [32]) is
such that zjm

= q2(jm−1)z for 1 � m � k and jm < jm+1.
Further, if we write as Sn(z) := ∏k−1

l=0 sYn
k,l

, we have the following recursive relation from
proposition 5.2,

Sn(z)|zk(n−1)+j =q2(j−1)z = (−)k(k+1)/2q2zk(k−1)/2
(n−1)k∏

i=1

(zi − q2kz)kSn−1(z′) (106)

where z′ = z\{zk(n−1)+1, . . . , znk}.

Proof. Since a Schur function sλ(x) is a symmetric function with respect to all the variables
xi , we consider only the following specialization of variables without loss of generality:

zk(n−1)+j = q2(j−1)z, 1 � j � k. (107)

Since the number of boxes in the first column of the Young diagram Yn
k,l is k(n − 1) + l,

we have at least a factor zl when we take the specialization (107). Around z = 0, the lhs of
(105) is approximated as

sYn
k,l

(z1, . . . , znk)
∣∣
zk(n−1)+j =q2(j−1)z

∝ zl

(n−1)k∏
i=1

zi · sYn−1
k,l

(z1, . . . , zk(n−1)) + O(zl+1). (108)

The maximal and minimal degrees with respect to z of the first term of the rhs of
equation (108) is k(n − 1) + l and l respectively.

A Schur function of m-variables has an expression in terms of determinants as

sλ(z1, . . . , zm) = det z
λj +m−j

i

det zm−j

i

= det z
λj +m−j+l+1
i∏

zl+1
i det zm−j

i

. (109)

For λ = Yn
k,l and m = nk, the sequence λ′

j = λj + m − j + l + 1 has the form

λ′ = (l, . . . , 1, k, k − 1, . . . , 1︸ ︷︷ ︸ · · · , k, . . . , 1︸ ︷︷ ︸) mod k + 1. (110)

Note that there is all λ′
j is not a multiple of (k + 1).



8950 K Shigechi and M Uchiyama

Specialize k variables as zk(n−1)+j = q2(j−1)z (1 � j � k) and set zi = q2kz for
i �= k(n − 1) + j, 1 � ∀j � k in the determinant expression (109). We find that k + 1 row-
vectors in the det of the numerator of (109), say vr, 0 � r � k, are such that (vr)i = q2rλ′

i zλ′
i .

These k + 1 row-vectors are not linearly independent, since we have
k∑

r=0

(vr)i =
(

k∑
r=0

q2r

)
qλ′

i zλ′
i = 0, (111)

where we have used the relation
∑k

r=0 q2r = 0 for q = −exp(π i/(k + 1)). The determinant
turns to be zero under the above specialization of k + 1 variables. By the symmetry of the
variables in the Schur function, we find that the lhs of (105) has a factor

∏
1�i�n(k−1)(zi−q2kz).

Together with (108), we may write as

sYn
k,l

(z1, . . . , znk)
∣∣
zk(n−1)+j =q2(j−1)z

∝ zl

(n−1)k∏
i=1

(zi − q2kz) · sYn−1
k,l

(z1, . . . , zk(n−1)). (112)

Actually, the total degree and partial degree of zi in the both sides of (112) coincide. The
prefactor (−)lq−2l = sY 1

k,l
(1, q2, . . . , q2(k−1)) is checked by collecting the terms with the

lowest degree in z (see proposition 5.1). �

6. Conclusion

In this paper, we have defined and studied the Ak generalized model of the O(1) loop model on
a cylinder by using the representation of the affine Hecke algebra. The affine Hecke algebra is
characterized by extra novel vanishing conditions, the cylindric relations. Two representations
of the algebra have been given; the first one is based on the spin representation, and the other
is based on states of the Ak generalized model. These two representations are connected by
the word representation of states of the Ak generalized model. We have established an explicit
way of constructing states of the Ak generalized model by the use of the rhombus tiling. We
have shown that the Yang–Baxter equation and q-symmetrizers are depicted as hexagons and
polygons, respectively. The meaning of the cylindric relations is clearly seen in the graphical
depiction of the Ak generalized model. The cylindric relations for the affine Temperley–Lieb
algebra implies that a loop surrounding the cylinder returns a weight τ . For the Ak generalized
model, a ‘band’ consisting of rhombi surrounding the cylinder gives a certain weight in terms
of the second kind of Chebyshev polynomials.

We have considered the eigenvector of the transfer matrix of the Ak generalized model
at the Razumov–Stroganov point, q = −exp(π i/(k + 1)). It has been found that this
eigenvector coincides with the special solution of the q-KZ equation of level 1 + 1

k
− k at

q = −exp(π i/(k + 1)) and s = 1. We have examined the sum rule for the Ak generalized
model on a cylinder and shown the formula is written in terms of the product of k Schur
functions. The obtained sum rule includes the sum rule for the O(1) loop model on a cylinder
when k = 2.

There are still some open problems. It was shown that the sum rules for the O(1)

loop models with various boundary conditions are related to exactly solvable models with
symmetries, alternating sign matrices with certain symmetries, or total numbers of the plane
partitions with symmetries. We expect that the sum rule for the Ak generalized model on a
cylinder may also relate to those objects. In the case of k = 2, the total number of half-turn
symmetric alternating sign matrices appeared in this context [22]. The method used in this
paper is applicable to the Hecke algebras of other types. We hope to come back to these issues
in the future.
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Appendix A

A.1. Proof of proposition 3.5

Proof of proposition 3.5. We first rewrite relation (44) into a simpler form.
Let

∣∣v(i+1)
0

〉 = ∑
s∈Sk

(−q)l(s)
∣∣v(i)

s(1) · · · v(i)

s(k)

〉 ∈ V ⊗k be the eigenvector of Y
(ik+1)
k−1 for

0 � i � n − 1 (see proposition 3.2). The unique eigenvector |v0〉 ∈ V ⊗N of Yq-sym is given
by the tensor product of

∣∣v(i)
0

〉
, i.e. |v0〉 = ⊗n−1

i=0

∣∣v(i+1)
0

〉
. By taking the expectation value w.r.t.

|v0〉, equation (44) is rewritten as〈
n−1∏
i=1

(eik − µk−1) · (enk − τ)

〉
= 0, (A.1)

where we denote 〈v0|O|v0〉 for some operator O by 〈O〉.
The vanishing condition Y

(ik+1)
k = 0 for any i ∈ Z/kZ is expressed as 〈e(i+1)k − µk〉 = 0.

In general, we have〈
m∏

j=1

(
eimk − µk

)〉
= 0, (A.2)

for 1 � im � k and 1 � m � n − 1, where we have used the relation elkY
(ik+1)
k−1 = Y

(ik+1)
k−1 elk

for l �= ik, (i + 1)k. Equation (A.1) can be rewritten as

lhs in (A.1) =
〈

n∏
i=1

(eik − µk) + �n−1
k (µk − τ)

〉
(A.3)

=
〈

n∏
i=1

eik − µn
k + �n−1

k (µk − τ)

〉
, (A.4)

where we have used equation (A.2),
〈 ∏m

i=1 eik

〉 = µm
k , 1 � m � k − 1, and �k = µk − µk−1.

By the relations τ − µk = µ−1
k+1 and U 2

k−1 − UkUk−2 = 1, eventually the wanted relation
equivalent to equation (44) is equivalent to〈

n∏
i=1

eik

〉
= 1

Un
k Un

k−1

(
U 2n

k−1 + Uk−1Uk+1
)〈v0|v0〉. (A.5)

On the other hand, we can evaluate
〈∏n

i=1 eik

〉
by using the spin representation. Let

us consider the action of
∏n

i=1 eik on the vector |v〉 = ∣∣v(1)
1 · · · v(1)

k v
(2)
1 · · · v(n)

k

〉 ∈ (Ṽ ⊗k)⊗n.

The operator eik acts locally on v
(i)
k and v

(i+1)
1 . To have a non-vanishing expected value,

〈v′| ∏k
i=1 eik|v〉 �= 0, an admissible 〈v′| satisfies v′(i)

m = v(i)
m for all i ∈ Z/nZ, 2 � m � k − 1

and either of the following conditions:

• v′(i)
1 = v

(i)
1 and v′(i)

k = v
(i)
k for all i ∈ Z/nZ,

• v′(i)
k = v

(i+1)
1 and v′(i+1)

1 = v
(i)
k for all i ∈ Z/nZ.
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Now, we are ready to evaluate〈
n∏

i=1

eik

〉
=

∑
S

(−q)
∑

i l(si )+l(ti )

〈
n⊗

i=1

ti(v
(i))

∣∣∣∣∣
n∏

i=1

eik

∣∣∣∣∣
n⊗

i=1

si(v
(i))

〉
, (A.6)

where the sum S is take all over s1, . . . , sn ∈ Sk and t1, . . . , tn ∈ Sk . From the above
considerations, we split the calculation into two cases as follows.

Case 1. We consider the case where si(1) = sj (1), si(k) = sj (k) for all i, j ∈ Z/nZ and ti’s
satisfy

• ti(1) = si−1(k) and ti(k) = si+1(1) for all i ∈ Z/nZ,
• ti(j) = si(j) for 2 � j � k − 1 and all i ∈ Z/nZ.

We abbreviate as t = ti , s = si without confusion. From (30), we have

l(t) = l(s) − 2(vs(k) − vs(1)) + sign[vs(k) − vs(1)]. (A.7)

If we rewrite |s(v)〉 in terms of s̃ ∈ Sk−2 such that |s(v)〉 ∝ |vs(1)s̃(v)vs(k)〉, we have

l(s) = l(s̃) + (vs(k) − vs(1)) − (k − 2) − 1
2 sign[vs(k) − vs(1)] − 1

2 . (A.8)

The action of
∏n−1

i=1 eik gives a factor 1 and that of enk gives qa where

a = −2
(
v

(1)

s(1) − v
(n)

s(k)

)
. (A.9)

Substituting equation (A.7), (A.8) and (A.9) into (A.6), we have

J1 =
∑

1�v
(n)

s(k) �=v
(1)

s(1)�k

∑
s̃i∈Sn−2

1�i�n

(−q)−n(2k−3)+
∑

i 2l(s̃i )−2(v
(1)

s(1)−v
(n)

s(k))

= (−q)−n(2k−3)I n
k−2(Uk+1Uk−1 − (k − 1))

= 1

Un
k Un

k−1

(Uk+1Uk−1 − (k − 1))〈v0|v0〉, (A.10)

where we have used the recurrence relation for Ik obtained in proposition 3.3.

Case 2. We consider the case where si(j) = ti(j) for all 1 � j � k and i ∈ Zn. Obviously,
we have

l(ti) = l(si) (A.11)

for all i. The action of eik’s gives a factor (−q)b where

b =
n∑

i=1

sign
[
v

(i+1)

s(1) − v
(i)

s(k)

]
. (A.12)

Substituting (A.8), (A.11) and (A.12) into (A.6), we have

J2 =
∑

si∈Sn

(−q)
∑

i 2l(si )+sign[v(i+1)

s(1) −v
(i)

s(k)]

=
∑
S ′

∑
s̃i∈Sk−2

(−q)
∑

i 2l(s̃i )+2(v
(i)

s(k)−v
(i)

s(1))−2(k−2)−sign[v(i)

s(k)−v
(i)

s(1)]−1+sign[v(i+1)

s(1) −v
(i)

s(k)]

= (−q)−n(2k−3)Ik−2

∑
S ′

(−q)
∑

i 2(v
(i)

s(k)−v
(i)

s(1))−sign[v(i)

s(k)−v
(i)

s(1)]−sign[v(i)

s(k)−v
(i+1)

s(1) ] (A.13)

and the sum is taken over all the sets:

S ′ =
{

v
(i)

s(1), v
(i)

s(k)

∣∣∣∣∣1 � v
(i)

s(1), v
(i)

s(k) � k, i = 1, 2, . . . , n

v
(i)

s(1) �= v
(i)

s(k), v
(i)

s(1) �= v
(i−1)

s(k)

}
. (A.14)
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From lemma A.1 (see below), J2 in equation (A.13) is rewritten as

J2 = 1

Un
k Un

k−1

(
U 2n

k−1 + (k − 1)
)
. (A.15)

Together with equations (A.10) and (A.6), we finally obtain〈
n∏

i=1

eik

〉
= J1 + J2 = 1

Un
k Un

k−1

(
U 2n

k−1 + Uk−1Uk+1
)
Ik (A.16)

and this completes the proof of relation (44). �

We need the following lemma to show equation (A.15).

Lemma A.1. Let

I =
∑

{il}∈S ′
q

∑n
l=1 2(i2l−i2l−1)−sign[i2l−i2l−1]−sign[i2l−i2l+1] (A.17)

where i2n+1 = i1 and

S ′ =
{
il

∣∣∣∣1 � il � k,

il �= il±1,
for 1 � ∀l � 2n

}
. (A.18)

Then, I is calculated in terms of U ′
k−1 = Uk−1(−τ) as

I = (U ′
k−1)

2n + (k − 1). (A.19)

Proof. Let us introduce a set of integer variables, U = {(u1, . . . , u2n)|1 � uj � k−1, for 1 �
j � 2n} and the subset of S ′, S ′

extra = {(i1, . . . , i2n)|i2l−1 = k′ + 1, i2l = k′, 1 � k′ �
k − 1, for 1 � l � n}.

We introduce the shift operator acting on a sequence of length 2n, S = (s1, . . . , s2n), by
ξ : S → S, si 	→ si+1 for i ∈ Z2n. We consider two subsets S0 ⊂ S ′\S ′

extra and U0 ⊂ U :

S0 = {(i1, . . . , i2n) ∈ S ′\S ′
extra|ξm(ij ) � (ij ), 1 � ∀m � 2n − 1}, (A.20)

U0 = {(u1, . . . , u2n) ∈ U |ξm(uj ) � (uj ), 1 � ∀m � 2n − 1}. (A.21)

The symbol � means lexicographic order, i.e. µ � ν stands for µj = νj for all 1 � j � 2n,
or µj = νj for 1 � j � i and µi+1 > νi+1 for some i. When we have a bijection η : S0 → U0,
We extend a bijection from S ′\S ′

extra to U. For a given i ∈ S ′\S ′
extra, we have a non-negative

integer rmin = min{r : ξ r i ∈ S0}. Then a bijection is extended by ξ−rmin ◦ η ◦ ξ rmin .
We construct a bijection η : S0 → U0 by first constructing an injection η : S0 → U0 and

showing there exists the injective inverse η−1.
The map η : S0 → U0 defines uj recursively starting from u1:

u1 = i1, u2 = u1 + d ′
1,

uj = uj−1 +

{
dj , djdj−1 > 0
d ′

j , djdj−1 < 0,

(A.22)

where dj := ij+1 − ij and d ′
j := ij+1 − ij − sign[ij+1 − ij ] for 1 � j � 2n − 1. From the

construction, η is injective. We have Im(η) ⊆ U0 since the branching rule (A.22) assures
uj � u1 and max{u} � max{i} − 1 � k − 1. Then, the inverse η−1 : U0 → S0 is explicitly
given by

i1 = u1, (A.23)

ij = ij−1 + tj−1 (A.24)
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and

tj =


−sign[tj−1], d̄j−1 = d̄j = 0
−sign[d̄j−1], d̄j−1 �= 0, d̄j = 0
d̄j + sign[d̄j ], tj−1d̄j > 0
d̄j , tj−1d̄j < 0,

(A.25)

where d̄j = uj+1 − uj with the initial condition t1 = d̄1 + 1. The map η−1 is also injective.
It is easy to verify that Im(η−1) ⊆ S0 since i2n � i1 + 1, ij �= ij+1 for 1 � ∀j � 2n and
max{ij } = max{u} + 1 � k. From these, η : S0 → U0 is a bijection.

Note that when i ∈ S0 and u = η(i) ∈ U0, we have
n∑

l=1

2(u2l − u2l−1) =
n∑

l=1

(u2l − u2l−1) + (u2l − u2l+1)

=
n∑

i=1

2(i2l − i2l−1) − sign[i2l − i2l−1] − sign[i2l − i2l+1],

since the branching rules (A.22) give the correct term for u2l − u1 = i2l − i1 − 1.
From these observations, we arrive at

I =
∑
U

q
∑2n

l=1(u2l−u2l−1) +
∑
S ′

extra

1

= (U ′
k−1)

2n + (k − 1). (A.26)
�

Example. The following list gives some examples of the bijection.

i u Exponent in equation (138)
(1, 2, 3, 7, 4, 2) (1, 1, 2, 6, 4, 2) 4
(7, 2, 3, 4, 2, 1) (6, 2, 2, 3, 2, 1) −8

(2, 1, 5, 3, 1, 4, 2, 5) (2, 1, 4, 3, 1, 3, 2, 4) 4

A.2. A property of Ci,π,π ′

In this appendix, we will show that a class of Ci,π,π ′ (see (P1-4) in section 4) is equal to 1. Let
us recall that the coefficient Ci,π,π ′ may be non-zero when πi � πi+1.

We introduce a sequence of Ľ-matrices as

Li+1,i+l (m) = Ľi+1(m)Ľi+2(m + 1) · · · Ľi+l(m + l − 1), (A.27)

and Li,j = 1 if i > j . Let B be a word representation corresponding a state |π〉
with πi+l+1 < πi < πi+1 < · · · < πi+l for l � 1. We consider a word of the form
B′ := Li+1,i+l (m

′)B.

Proposition A.2. The action of Ľi(m) on B′ is given by

Ľi(m)B′ = Li,i+l (m)B + Li+2,i+l (m)B. (A.28)

Proof. We use the method of induction. We assume

Ľi+l′−1(m)Li+l′,i+l (m)B = Li+l′−1,i+l (m)B + Li+l′+1,i+l (m)B (A.29)
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for 1 � l′ � l − 1. From the above assumption, we have

Ľi(m)B′ = Ľi(m)Li+1,i+l−1(m)Ľi+l(m + l − 1)B
= (Li,i+l−1(m) + Li+2,i+l−1(m)Ľi+l(m + l − 1)B
= Li,i+l (m)B + Li+2,i+l (m)B

+ (�m+l−1Li,i+l−1(m) − �m+l−2Li+2,i+l−1(m))B, (A.30)

where we used the word Ľi+l(m + l − 1)B satisfies πi+l < π1 < . . . < πi+l−1 and
�k = µk − µk−1. By using ejB = τB for i � j � i + l − 1, the third term in (A.30)
is

the 3-rd term =
l−2∏
r=1

1

µm+r−1

(
�m+l−1

µm+l−2µm+l−1
− �m+l−2

)
B,

= 0 (A.31)

where we used the relation 1
µkµk−1

�k = �k−1. We finally prove that equation (A.28) holds
true by induction. �

Set m = 1 in equation (A.28). Together with the construction of states considered in
section 4.2, we have the following corollary.

Corollary A.3. Suppose that a state |π0〉 is equivalent to B′ in the word representation and
π0

i+1 � π0
i−1. We have

ei |π0〉 = |π1〉 + |π2〉, (A.32)

where

π1 =
{

π1
i = π0

i+1, π
1
i+1 = π0

i ,

π1
j = π0

j for j �= i, i + 1,
π2 =

{
π2

i+1 = π0
i+2, π

2
i+2 = π0

i+1,

π2
j = π0

j for j �= i + 1, i + 2.
(A.33)

A.3. Examples: k = 3 and k = 4

A.3.1. k = N = 3 case. We have six states in the case of k = N = 3. The word
representation of states is listed as

word e3Y2 Z2,3Y2 Z13Y2 e1Z2,3Y2 e2Z1,3Y2 Y2

path 321 312 231 132 213 123

where Zi,j = eiej − 1 and Y2 = e1e2e1 − e1. We obtain the representation of the generators

e1 =



0 0 0 0 0 0
0 0 0 0 0 0

τ 2 − 1 0 τ 0 1 0
0 1 0 τ 0 0
0 0 0 0 0 0
1 0 0 0 τ 2 − 1 τ


, e2 =



0 0 0 0 0 0
τ 2 − 1 τ 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 τ 0
1 0 0 τ 2 − 1 0 τ


,

e3 =



τ 0 0 0 0 1
0 τ 0 1 τ 2 − 1 0
0 0 τ τ 2 − 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, σ =



0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0


.
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A.3.2. Two examples are given for how the generator of the affine Hecke algebra acts on a
state. We consider the case where k = 4 and n = 2.

e4 =

+ (A.34)

e5 =

+ (A.35)

The bold arrows indicate where the generators act. The state of the lhs of equation (A.34) is
an example of states which do not satisfy the zero-sum rule on the top vertices of Yq-sym. We
see that the properties (P2) and (P4) are satisfied.
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